Calcium-phosphate biomaterials for bone healing
practical guideline for implementation in clinical practice
SECOND EDITION
This publication was made possible by...
Colofon

author Chris Arts

layout Rosa Arts

ISBN 9789082901603 (second edition)

copyright Chris Arts 2023, Maastricht - the Netherlands

ALL RIGHTS RESERVED. This book contains material protected under International and Federal Copyright Laws and Treaties. Any unauthorized reprint or use of this materials is prohibited. No part of this book may be reproduced or transmitted in any form or by any means without express permission from the author/publisher.
Contents

Preface page 01
Definitions page 03
Ca-P Ceramics properties page 17
Bone healing: Diamond & Pentagon concept page 37
Cases page 59
References page 75
Dear reader,

The second edition of this booklet summarizes the basic terminology regarding material/mechanical properties of Ca-P ceramics and will explain their effect on biological and mechanical behaviour. Also the Diamond/Pentagon concept for bone healing is explained and supported by illustrative cases.

In this second edition, additional information is added on osteoinduction and additional biomaterials such as bioactive glass and bioactive peptides.

As before, this book is by no means intended as a comprehensive overview but aims to raise awareness and stimulate discussion regarding Ca-P ceramics for bone healing in clinical practice. I trust you will find this a useful addition to your clinical practice and education.

Chris Arts
Associate Professor Translational Biomaterials
Maastricht UMC and Eindhoven University of Technology (TU/e)
j.arts@mmm.nl
Definitions
Bone is a living tissue capable of self-repair

Bone only forms when mechanical loading is present (Wolff’s law).

Bone is continuously being renewed; balance between osteoblasts forming bone and osteoclasts resorbing bone.

This process of constant bone resorption and bone formation is called bone remodeling.

Functions of bone

Stabilise and support body

Protection of internal organs and soft tissue

Rigid part of the human movement system

Storage of minerals and fatty acids

Production of blood cells through bone marrow haematopoiesis
The process of bone remodeling is also called “creeping substitution”. The osteoclastic resorption of bone grafts or Ca-P materials and its replacement by new living bone made by osteoblasts from the host tissue. Gradual penetration across a fracture site by osteogenic tissue followed by bone formation.

Biomaterial

A natural or synthetic material that is suitable for introduction into living tissue.

A synthetic material used to replace part of a living system or to function in intimate contact with living tissue.

A biomaterial is a substance that has been engineered to take a form which, alone or a part of a complex system is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure.
Definitions
Calcium-phosphate biomaterials for bone healing

Scaffold
Temporary framework used to support people and material in the construction or repair of buildings.

In regenerative medicine the more commonly used definition is: “An artificial structure capable of supporting 3-D tissue formation.”

To allow bone formation a scaffold should allow: attachment, proliferation, migration, and phenotypic expression of bone cells leading to formation of new bone in direct apposition to the Ca-P biomaterial.

Scaffold purpose

<table>
<thead>
<tr>
<th>Allow</th>
<th>cell attachment and migration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deliver and retain</td>
<td>cells and biochemical factors</td>
</tr>
<tr>
<td>Enable diffusion</td>
<td>of vital cell nutrients and expressed products</td>
</tr>
<tr>
<td>Exert</td>
<td>certain mechanical and biological influences to modify the behaviour of the cell phase differentiation</td>
</tr>
</tbody>
</table>

A scaffold must be...

- Biocompatible and biodegradable
- Mechanically stable over time
- Able to incorporate any chemical, or biological cues desired
- Adequate permeable to allow fluid flow and diffusion
- Unable to elicit an inflammatory reaction

The ideal scaffold should be...

> Implantable through a minimal surgical exposure
> Applicable for various indications
> Moldable to conform to and fill irregular defects
> In possession of roughly the same visco-elasticity as bone
> As rigid and strong as intact bone for immediate load-bearing capability
> Promote new bone formation and incorporation by host bone
> Available in large quantities
> Affordable
Bioactivity2,11

The ability of a material to have interaction with or effect on any cell tissue in the human body.2

The ability of a material to form a direct bonding with the host biological tissue.

Biocompatibility2,11

The ability of a material to perform with an appropriate host response in a specific situation.

Ability of a material to be in contact with a living system without producing an adverse effect.

Biocompatibility of a material-host system5

During ESB 2014 in Liverpool Prof. D.F. Williams postulated that biocompatibility of a specific material does not exist. Instead the definition should be broadened and should state: biocompatibility of a material-host system.

Refers to the ability of a biomaterial to perform its desired function with respect to a medical therapy, without eliciting any undesirable local or systemic effects in the recipient or beneficiary of that therapy, but generating the most appropriate beneficial cellular or tissue response in that specific situation, and optimizing the clinically relevant performance of that therapy.5
Definitions

Calcium-phosphate biomaterials for bone healing

Osteointegration \(^{2,12}\)
The property of a material that allows development of a direct, adherent and strong bond with the surrounding bone tissue.
The formation of a direct interface between an implant and bone, without intervening soft tissue.

Osteopromotive (DBMs)
Describes a material that promotes the de novo formation of bone. It will not contribute to de novo bone growth but serve to enhance the osteoinductivity of osteoinductive materials.

Osteostimulative (Bioactive glasses, ceramic BGS)
An osteostimulative material needs an osseous defect that provides nutrients (blood) to stimulate bone growth. Effectively promotes new bone growth, accelerating bone remodeling. In addition, a synthetic bone graft that is osteostimulative will not grow ectopic bone.

Osteoinduction \(^{2,10-11}\)
The ability to induce new bone formation through molecular stimuli recruitment and differentiation in a controlled phenotype or particular lineage promote cellular functions leading to new bone formation.

Active process
Osteoinduction is too widely defined and often used when not supported (DBMs). It should be defined according to location in the body and timeline!

Osteoconduction \(^{2,10-11}\)
The ability of a scaffold to facilitate new bone formation by allowing bone cells to adhere, proliferate, and form extracellular matrix on its surface and pores.

Passive process
Primarily based on mechanical stimuli as well as chemical composition, surface properties and geometry of the material.
15 Definitions

Calcium-phosphate biomaterials for bone healing

Definitions

- **PDGF**: Platelet-derived growth factor
- **BMP**: Bone morphogenetic protein
- **TGF**: Transforming growth factor

Principles of osteoinductive materials

1. MSC Recruitment
2. MSC Differentiation
3. Bone Formation

Osteoinduction

$^{21-22}$

Osteoinduction, as proposed by Friedenstein, was "the induction of undifferentiated inducible osteoprogenitor cells that are not yet committed to the osteogenic lineage to form osteoprogenitor cells".

Urist defined the process of bone formation by autoinduction, or osteoinduction as "the mechanism of cellular differentiation towards bone of one tissue due to the physicochemical effect or contact with another tissue".

Requirements

- Capability of recruiting mesenchymal-type osteoprogenitor cells.
- Capability of transforming an undifferentiated mesenchymal cell into a mature, bone forming osteoblast.
- Capability of inducing bone formation when implanted in ectopic locations.
Ca-P ceramics

Ca-P ceramics refers to ancient Greek “Keramos” which means “pottery.”

Made from inorganic, non-metallic materials with a crystalline structure, usually produced by sintering (processing at high >1200° C temperature).

Most ceramics are hard, porous yet brittle.

The osteoconductive Ca-P biomaterials allow: attachment, proliferation, migration, phenotypic expression of bone cells leading to formation of new bone in direct apposition to the Ca-P biomaterial.

Property overview of Ca-P ceramics

- **Chemical properties**
 - Composition, crystallinity, Ca-P ratio

- **Structural properties**
 - Porosity, interconnectivity

- **Biological & Mechanical characteristics of Ca-P ceramics**

- **Mechanical properties**
 - Creep, stiffness, Young’s modulus

- **Degradation properties**
 - Speed of resorption, chemical, cellular?
Composition refers to the original base components of the material

Hydroxyapatite (HA) \([\text{Ca}_10(\text{PO}_4)_6(\text{OH})_2]\)

Tri-calcium phosphate (TCP) \([\text{Ca}_3(\text{PO}_4)_2]\)

Biphasic: percentage combination of HA & TCP in same material

Hybrid: One of the above with added material such as Si, Mg or Bioactive glass

Composition has an effect on

Mechanical properties (impactability strength, stiffness, Young’s modulus)

Biological properties (osteoconduction)

Degradability speed

Rules of thumb

- TCP less brittle in dry formulation compared to HA
- TCP quicker loss of mechanical strength compared to HA in vivo
- TCP chemically less stable compared to HA
- TCP possesses high resolution characteristics compared to HA
- TCP easily resorbed by osteoclasts compared to HA
- TCP faster degradation (12-18 months) compared to HA (2-10 years)
Crystallinity refers to the degree of structural order in a material.

Less order provides a more amorphous material.

Crystallinity has an effect on:

- Mechanical properties (hardness, density)
- Biological properties (osteoconduction)
- Degradation properties (speed and type of degradation)

Rules of thumb

- High crystallinity provides better stiffer material
- Amorphous porous materials enhance bone ingrowth but also biological degradation
- High crystallinity leads to slower degradability due to resistance in dissolution
Calcium-phosphate (Ca/P) ratio

refers to be a measurement of Ca-P ceramics composition

<table>
<thead>
<tr>
<th>Name</th>
<th>Formula</th>
<th>Ca/P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetracalcium phosphate</td>
<td>Ca₄(PO₄)₂O</td>
<td>2.0</td>
</tr>
<tr>
<td>Hydroxyapatite</td>
<td>Ca₁₀(PO₄)₆(OH)₂</td>
<td>1.67</td>
</tr>
<tr>
<td>Calcium deficient hydroxyapatite</td>
<td>Ca₉(HPO₄)(PO₄)₅(OH)</td>
<td><1.67</td>
</tr>
<tr>
<td>Tricalcium phosphate (α,β)</td>
<td>Ca₃(PO₄)₂</td>
<td>1.5</td>
</tr>
<tr>
<td>Dicalcium phosphate dihydrated</td>
<td>CaHPO₄·2H₂O</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Ca/P ratio Ca-P granules

between 1.67 (HA) and 1.5 (TCP)

Ca/P ratio Ca-P cements

between 2.0 (TTCP) and 1.0 (DCPH)

Rules of thumb

<table>
<thead>
<tr>
<th>Strength</th>
<th>Degradability</th>
</tr>
</thead>
<tbody>
<tr>
<td>> High Ca/P ratio provides higher strength when compared to low Ca/P ratio</td>
<td>> High Ca/P ratio 1.67 (HA) leads to slower degradability as compared to Ca/P ratio of 1.5 (TCP)</td>
</tr>
</tbody>
</table>
Ca-P Ceramics Properties

Structural Properties

Porosity refers to the fraction of the volume of voids within the material over the total material volume.

- **Macro porosity**
 - Pores $> 100 \, \mu m$ - $400 \, \mu m$
 - Provides a scaffold for bone cell colonization

- **Micro porosity**
 - Pores $< 10 \, \mu m$
 - Allows body fluid circulation (proteins)
 - Allows blood vessel ingrowth
 - ($< 30 \, \mu m$ decreased tissue infiltration)

<table>
<thead>
<tr>
<th>Porosity properties</th>
<th>Surface Porosity</th>
<th>Interconnective Porosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allows for mechanical interlocking between the implant biomaterials and host bone</td>
<td>Pores only on surface area</td>
<td>Pores throughout entire structure</td>
</tr>
<tr>
<td>Regulates cell reactions</td>
<td>Mechanically stronger</td>
<td>Mechanical weaker</td>
</tr>
<tr>
<td>Effects degradability</td>
<td></td>
<td>Direction dictates pathway for ingrowing cells</td>
</tr>
</tbody>
</table>

Rules of Thumb

- **Strength**
 - Interconnective porosity mechanical weaker compared to surface porosity

- **Resorption**
 - Interconnective porosity resorbs faster compared to surface porosity

- **Degradation**
 - Interconnective porosity degrades faster compared to surface porosity
Ca-P ceramics properties

Mechanical properties

Strength refers to the load carrying capacity of a material.

Stiffness refers to the resistance to elastic deformation.

Strain refers to the deformation of a material by a force acting on the material. Strain can be tensile or compressive (plastic or viscoelastic deformation).

Young’s Modulus (modulus of elasticity) refers to the unique property of a material; measure of a material to resist deformation and return to its original shape.

Creep refers to the permanent deformation under influence of mechanical stress.

<table>
<thead>
<tr>
<th>Mechanical property</th>
<th>Cortical bone</th>
<th>Cancellous bone</th>
<th>Ca-P ceramics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength (MPa)</td>
<td>50-150</td>
<td>10-100</td>
<td>40-100</td>
</tr>
<tr>
<td>Elastic modulus (GPa)</td>
<td>3-20</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Compressive strength (MPa)</td>
<td>130-230</td>
<td>2-12</td>
<td>100-900</td>
</tr>
<tr>
<td>Young’s modulus (GPa)</td>
<td>15-42</td>
<td>0,02 - 0,5</td>
<td>70-120</td>
</tr>
</tbody>
</table>
Ca-P ceramics properties

Mechanical properties

Strength refers to the load carrying capacity of a material

Elastic modulus, compressive strength and tensile strength are highly dependent on the position of the body and the condition of the individual.\(^\text{11}\)

Mechanical properties of bone vary with depending on load orientation with respect to the orientation of tissue (anisotropy) and the speed to which the load is applied (viscoelasticity).\(^\text{11}\)

Rules of thumb

<table>
<thead>
<tr>
<th>Strength</th>
<th>Material strength primarily dependent on composition, structure, porosity and elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strength</td>
<td>Ca-P ceramics strong under compression and weak under torsion loads</td>
</tr>
<tr>
<td>Strength</td>
<td>Ca-P cement compressive modulus stronger compared to Ha or TCP granules</td>
</tr>
<tr>
<td>Strength</td>
<td>TCP quicker loss of mechanical strength compared to HA in vivo</td>
</tr>
</tbody>
</table>
Degradation refers to a chemical process resulting in the cleavage of covalent bonds due to hydrolysis, oxidation or enzymatic processes.

(Bio)degradation or resorption is chemical breakdown of an implant by a chemical agent (enzyme, cell, organism).

Erosion refers to physical changes in size, shape or mass due to degradation, dissolution, ablation or wear.

Erosion can be distinguished into surface erosion and bulk erosion.

Degradation has an effect on:

- Mechanical properties (impactability strength, stiffness, Young’s modulus)
- Biological properties (osteoconduction)
- Degradability speed

Rules of thumb:

- TCP chemically less stable compared to HA due to high resolution characteristics
- TCP easily resorbed by osteoclasts compared to HA
- TCP faster degradation (12-18 months) compared to HA (2-10 years)
Ca-P ceramics properties
Calcium-phosphate biomaterials for bone healing

In vitro dissolution of Ca-P materials depends on

- Composition
- Crystallinity
- Ca/P ratio
- Interconnectivity
- Degradability / type and speed of resorption
- Mechanical properties
- Particle size
- Surface area
- Production process
- Patient characteristics: age, gender, health status, co-morbidities

Ca-P bone substitutes have to be intact long enough for bone ongrowth to occur and to maintain stability

Mechanical properties: mechanical properties such as elastic modulus, tensile strength, fracture toughness, fatigue, and elongation percentage should be as close as possible to the replaced tissue (mechanical compatibility) in order to prevent bone loss, osteopenia, or “stress shielding”.

Ca-P ceramics must have enough mechanical strength to retain its structure in order to comply with its mechanical function after its implantation in the case of hard, load-bearing tissues as bone.

To achieve balanced bone remodeling, slow bone remodeling and to fast biomaterial resorption should be prevented.

Pore size and porosity: a 3-D design affects the spatial distribution and location of cells, nutrients, and oxygen, thus affecting the viability of the new formed tissue. Porous scaffolds facilitate the migration and proliferation of cells, providing an appropriate microenvironment for cell proliferation and differentiation and allowing the mass transfer of nutrients, oxygen, and waste metabolic products within the structure.

Scaffolds should have a large internal surface area due to overall porosity and pore size. The surface to volume ratio of porous scaffolds depends on the size of the pores. A large surface area allows cell adhesion and proliferation, whereas a large pore volume is required to contain and later deliver a cell population sufficient for healing or regeneration process.
Bone healing
Bone healing is a multidimensional process requiring all elements of the Diamond concept.18-19

Multidimensional process requiring all elements of the Diamond concept combined with mechanical stability and vascularization.18-19
Bone healing
Stepwise assessment of bone defect

Stepwise assessment of bone defect
What would you do with this patient... And why?

1. Observe
 - Changed anatomy > correct
 - Instability > stabilise
 - Bone loss, CT? > restore 3-D

2. Think (structure)

3. Plan

4. Operate

5. Clinical follow-up of cases

Stepwise bone defect assessment considerations

1. Changed anatomy
 - > correct
 - alignment mechanical/anatomical axis
 - articular surface

2. Instability
 - > stabilise
 - rigid or dynamic fixation
 - minimal invasive or open exposure
 - choice fixation

3. Biological capacity
 - > assess regenerative capacity
 - availability of stem cells
 - availability of vascularisation

4. Patient
 - > assess regenerative capacity
 - co-morbidity
 - post-op compliance
Bone healing

Biomaterial choice considerations

Rules of Thumb

- Defect location, size, local mechanical (loading regime, stability) and biological environment (cells, osteoinductive signaling, vascularisation)
- Determine what bone substitute material can be used

Biomaterial choice considerations

1. Material
 - Biocompatibility / osteoconductivity / osteoinductivity
 - Handling (injectability)
 - Mechanical properties material and mechanical load on bone defect
 - Resorption speed
 - Containment in defect (metal, periost flap, muscle, bone)

2. Surgical
 - Connection (interdigitation) with host tissue
 - Mechanical stability

3. Mechanical
 - Adequate fixation (preferably dynamic)
 - Availability of stem cells
 - Availability of vascularisation
 - Co-morbidity

4. Biological
 - Post-op compliance
 - Large differences in level of evidence between products
 - Personal preference
 - Experience
Bone healing

Biomaterial choice considerations

Focus on Autograft

<table>
<thead>
<tr>
<th>Composition</th>
<th>Donor bone from patient’s own iliac crest (gold standard?)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROS</td>
<td>Cheap (but prolonged surgery time)</td>
</tr>
<tr>
<td></td>
<td>Osteogenic, osteoconductive and osteoinductive</td>
</tr>
<tr>
<td></td>
<td>Extensive clinical experience</td>
</tr>
<tr>
<td>CONS</td>
<td>Pain from harvest(^a) and donor site morbidity(^a,b)</td>
</tr>
<tr>
<td></td>
<td>Quality and regenerative capacity donor depend</td>
</tr>
<tr>
<td></td>
<td>• stem cells (\uparrow \text{with age})</td>
</tr>
<tr>
<td></td>
<td>• growth factors (\downarrow \text{with age})</td>
</tr>
<tr>
<td></td>
<td>Limited availability</td>
</tr>
</tbody>
</table>

\(^a\) with age

Focus on Allograft

<table>
<thead>
<tr>
<th>Composition</th>
<th>Donor bone from another patient (femoral heads)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROS</td>
<td>Osteoconductive</td>
</tr>
<tr>
<td></td>
<td>No pain complications</td>
</tr>
<tr>
<td></td>
<td>Good availability</td>
</tr>
<tr>
<td></td>
<td>Extensive clinical experience</td>
</tr>
<tr>
<td>CONS</td>
<td>Risk of disease/virus transfer / graft rejection</td>
</tr>
<tr>
<td></td>
<td>Variable quality (donor dependent)</td>
</tr>
<tr>
<td></td>
<td>Regenerative capacity donor dependent cancellous bone > cortical bone</td>
</tr>
<tr>
<td></td>
<td>Expensive (>600 Euro/femoral head)</td>
</tr>
</tbody>
</table>
Bone healing

Biomaterial choice considerations

Focus on DBM

Composition Exposing allograft bone to demineralizing agents

- **PROS**
 - Good handling properties (easy to mold/shape)
 - Various growth factors in material
 - Extensive clinical experience

- **CONS**
 - Risk of disease / virus transmission
 - Variable quality
 - Inconsistent osteoinductive
 - Minimal osteoconductive
 - No FDA device approval

Focus on Ca-P ceramics

- **Composition** Hydroxylapatite (HA), Tricalcium phosphate (TCP), Biphasic, one of the above with added material Si, Mg

- **PROS**
 - Osteoconductive
 - No risk of disease/virus transfer
 - Availability every shape, porosity, composition
 - Unlimited supply / long shelf life

- **CONS**
 - Handling differs among products
 - Never osteoinductive by themselves
 - Large variance material properties, level of evidence
Bone healing
Biomaterial choice considerations

Focus on BMPs

Composition: Re-combinant produced materials in Chinese hamster ovaries

PROS
- Osteoinductive and somewhat osteoconductive carrier
- Effective (Fusion levels PLIF 60-100%) 15
- Extensive clinical experience

CONS
- Expensive
- Dose not optimal (super physiological)
- Can have both anabolic (osteoblasts) or catabolic (osteoclasts) effect on bone regeneration
- High complications rate

Focus on Bioactive glass

Composition: Silicate & sodium dioxide, calcium oxide, phosphorous

PROS
- Osteostimulative (osteoconductive and effect on angiogenesis)
- High ability to firmly attach to living tissue and facilitate tissue growth
- Antimicrobial properties (S53P4)
- Proven effect on stem cell

CONS
- More expensive than standard osteoconductive scaffolds
- Limited product forms
Bone healing
Biomaterial choice considerations

Bioactive glass: mechanism of action

When S53P4 bioactive glass is implanted in a septic bone defect it will exchange alkali from the glass surface with the hydronium in the surrounding microenvironment, which will increase the local pH. The release of ions of the glass surface will also increase the osmotic pressure locally.

A silica gel layer will be formed near the glass surface to which amorphous calcium phosphate precipitates and subsequently will crystallize into natural hydroxyapatite. The hydroxyapatite will induce the osteostimulative effect by activating osteogenic cells.

1. In septic bone surgery bacteria are present in the bone defect
2. Upon implantation the surface reactions start on the bioactive glass S53P4 granules
3. Release of ions that increase pH and osmotic pressure of the microenvironment of the granules
4. Formation of silica gel and precipitation of calcium phosphate on bioactive glass surface
5. Calcium phosphate crystallises to natural hydroxyapatite
6. Hydroxyapatite layer will initiate osteointegration and thereafter the osteostimulative process
Bone healing

Biomaterial choice considerations

Focus on Bioactive peptides

Composition i-FACTOR P-15 peptide. Type 1 collagen derivative

Potential BMP drawbacks can be waylaid using bioactive peptides

i-FACTOR P-15: mechanism of action

PROS
- Osteoconductive with added osteoinductive properties
- Effective
- Safe: high degree of biological specificity > can only target osteoblasts
- Prove: extensive clinical experience, Level I data

CONS
- More expensive than standard osteoconductive scaffolds
- Limited product forms

1. ATTRACT
Recruitment osteogenic precursor cells by making P-15 binding sites available for cellular adhesion

2. ATTACH
The high affinity between cells and the P-15 peptide supports the natural physiological mechanism by which cells attachment and interact with Type I collagen.

3. ACTIVATE
The P-15 peptide enhances bone formation by activation natural mechanical and chemical signalling pathways within the cell stimulating the release of specific growth factors and creating a microenvironment conductive to new bone formation.
Bone healing

Clinical indications

1. Bone graft extender
 In case insufficient bone graft volume is available
 - Autograft, allograft, DBM, Ca-P granules, bioactive glass and bioactive peptides can be used
 - TCP resorption time < HA & bioactive glass
 - Ca-P cement, BMP should not be used

2. Small contained bone defects
 Filling of small Ø <2cm 'unloaded' defects when fixation/stabilisation is absent
 - Autograft, Allograft, DBM, Ca-P granules, bioactive glass and bioactive peptides can be used
 - TCP resorption time < HA & bioactive glass
 - Ca-P ceramic/bone graft mixtures result in a more homogeneous mixture
 - Ca-P cement, BMP should not be used

3. Smaller non-load bearing defects
 Filling of larger Ø <2cm 'unloaded' defects when fixation/stabilisation is absent
 - Autograft, allograft, Ca-P granules, bioactive glass and bioactive peptides can be used (provide structural integrity)
 - Use of DBM is not advocated, due to lack of structural integrity
 - Ca-P weight bearing granules made of HA or biphasic HA-TCP (resorb faster than Ca-P cement)
 - Ca-P cements > stable but slower resorption
 - BMP should not be used

4. Larger stabilised defects
 Tibia plateau #, distal radius #, distal/proximal femur #, open wedge osteotomy
 - Autograft, allograft, Ca-P granules, bioactive glass and bioactive peptides can be used (they provide structural integrity)
 - Use Ca-P cements > stability for bone fragments, but slow resorption
 - Do not use BMPs or DBMs as standalone materials (no structural integrity / stability of fragments)

5. Weight-bearing defects
 Bone impaction grafting in TKA & THA, large acetabular #, segmental defects
 - Autograft, allograft, Ca-P granules, bioactive glass and bioactive peptides can be used (provide structural integrity)
 - Use Ca-P cements > stability for fragments but slow resorption
 - Defect closure for material containment is essential
 - Local (and systematic) antibiotic therapy must be used
 - Use S53P4 bioactive glass or bone grafts / Ca-P ceramics loaded with high dose antibiotics
 - S53P4 bioactive glass successful in one-stage treatment in osteomyelitis
 - Cave: adequate debridement is essential for treatment success

6. Infected defects
 In general Ca-P materials as standalone are a contra-indication when not combined with antibiotics
 - Osteosynthesis must come first
 - Use materials that provide structural integrity (bone grafts, Ca-P ceramics, bioactive glass)
 - Can use Ca-P cements > stability for fragments but slow resorption
 - Defect closure for material containment is essential
 - Local (and systematic) antibiotic therapy must be used
 - Use S53P4 bioactive glass or bone grafts / Ca-P ceramics loaded with high dose antibiotics
 - S53P4 bioactive glass successful in one-stage treatment in osteomyelitis
 - Cave: adequate debridement is essential for treatment success
Bone substitute materials vary in composition, mechanical strength and biological mechanism of function, each having their own advantages and disadvantages.

Large variance in bone substitute materials, material properties, indications and level of evidence.

Not all bone graft substitutes will perform the same way, and their performance in one clinical site may not necessarily predict their performance in another site.

The choice of the optimal bone substitute is therefore not always an easy one, and largely depends on the clinical application and its associated biological and mechanical needs. Mechanical stability should primarily always be the predominant factor.

Pentagon / Diamond concepts are useful tools for planning surgery with bone substitute materials.
Cases

Case 1 Tibia osteotomy page 61
Case 2 Distal radius non-union page 63
Case 3 Osteomyelitis page 67
Case 4 Tibia plateau fracture page 69
Case 5 Distal radius fracture page 71
Case 6 THA impaction grafting page 73
Case 1 Tibia Osteotomy

Top (left): B-TCP wedge and (right) location of osteotomy and biopsy.

Bottom Bone remodeling at different follow-up times after open wedge osteotomy filled with TCP: (A) at 6 weeks, (B) at 3 months, (C) at 6 months, (D) at 12 months.

Details

- Porous β-TCP (Ca₃(PO₄)₂) with 70% interconnected macropores with a size of 100–500 μm and micropores of 1–10 μm (ChronOS, Synthes)
- 16 patients (17 osteotomies): core biopsies for histology of bone remodeling at different follow-up periods
- X-rays at 6 weeks, 3 months, 6 months and 1 year postoperative
- Complete consolidation at 12 months in all cases
- 16 patients (17 osteotomies): core biopsies at different follow-up periods
- Note: although the B-TCP wedge is almost completely resorbed at 12 months and bone is remodeling, the plate is still providing mechanical stability
- The newly formed bone is a mixture of woven and lamellar bone and it’s not as strong as completely remodeled bone
- This case illustrates the importance of the element mechanical stability of the Pentagon concept

Results

Lessons learned

Lessons learned
63 Cases
Case 2 Distal Radius Non-Union

• 43-year-old male presented with a fracture to the left wrist.
• Clinical examination revealed painful range of motion with dorsal inclination and shortening (left)
• 1st intervention ORIF (middle)
• Post-operative a distal radius non-union developed within 8 weeks (right)
 - Debridement of non-union fibrous tissue, ORIF revision (left)
 - Fill of defect with i-FACTOR FLEX strip filled the defect and was saturated with autologous blood (middle)
 - i-FACTOR FLEX combines an anorganic bone matrix (ABM) with P-15 peptide (Cerapedics, USA)
 - Reduction and internal fixation of the non-union site was performed using the same distal radius plate with new locking screws

Details 1st surgery

Details 2nd surgery
Case 2 Distal Radius Non-Union

Results

- Post-op X-ray (left) and 8 week post-op X-rays (right)
- X-rays showed consolidation of the non-union site and an increase in bone mineralisation

Lessons learned

- This case illustrates the importance of the elements cells (osteogenesis), scaffold (osteconductive matrix), growth factors (osteoinductive signaling) and mechanical stability of the Pentagon concept
Case 3 Osteomyelitis

- Patient distal tibia osteomyelitis > Brodie’s abscess
- One-stage intervention: debridement surgery and defect filling with S53P4 bioactive glass (Bonalive, Finland)

Bottom images left and middle: post-operative status showing S53P4 bioactive glass in defect and soft tissue envelope

Bottom image right: 1 year clinical follow-up showing complete eradication of infection, S53P4 bioactive glass granules integrated in a mature bone matrix and previous detected granules in soft tissue envelope are fully remodeled

Details

Results

- Bottom images left and middle: post-operative status showing S53P4 bioactive glass in defect and soft tissue envelope
- Bottom image right: 1 year clinical follow-up showing complete eradication of infection, S53P4 bioactive glass granules integrated in a mature bone matrix and previous detected granules in soft tissue envelope are fully remodeled

Lessons learned

- This case illustrates the importance of the element scaffold (osteoconductive matrix) and mechanical stability of the Pentagon concept
- This case also illustrates that S53P4 bioactive glass biomaterials result in complete infection eradication while also stimulating bone remodeling
Details

- Depression tibia plateau fracture (OTA/AO 41-B2, Schatzker type 3)

Results

- Mechanical stabilisation with plate and lag-screws.
- Used biomaterial for bone void filling > Cerament: Hybrid Ca-P / Ca-S bone cement. (Cerament BVF, Bonesupport, Sweden)
- Post-operative, the radiopaque area in the lateral metaphysis corresponds to the contrast agent in the applied bone cement that diffuses away from the cement within 2 to 3 days
- At 26 weeks, bone defect healing with directional formation of bone trabecula was noticed on AP X-ray.

Lessons learned

- This case illustrates the importance of the elements mechanical stability and scaffolds (osteoconductive matrix) of the Pentagon concept.
Cases
Case 5 Distal Radius Fracture **

Details
- Porous bi-phasic ceramic strip 80% β-TCP [Ca₃(PO₄)₂] and type-1 bovine collagen (Vitoss strip, Stryker)
- Single patient n=1 case
- X-rays at 12 weeks

Results
- Fracture stabilized with plate > osteosynthesis must come first!
- Bone void filled with TCP strip (Vitoss)
- Bone healing at 12 weeks follow-up
- The newly formed bone is a mixture of woven and lamellar bone and is not as strong as completely remodeled bone

Lessons learned
- This case illustrates the importance of the element scaffold of the Pentagon concept

**Courtesy to Prof. Dr. Med. G. Zimmerman, Theresien Krankenhaus Mannheim, Germany for sharing the case
Cases

Case 6 THA Impaction Grafting

Details

- Porous bi-phasic TCP-HA granule) 80% β-TCP [Ca$_3$(PO$_4$)$_2$] 20% HA [Ca$_{10}$(PO$_4$)$_6$](OH)$_2$] with not interconnected macropores with a size of 300–600μm and micropores of 2–80μm (BoneSave, Stryker)
- Revision total hip arthroplasty > TCP-HA granules as bone void filler in load-bearing bone defect
- Biphasic TCP-HA (BoneSave) granules are strong enough to be used in load-bearing applications
- Gradual remodeling into a new bone structure over time
- Advise: neo vascularisation cannot span a graft layer thickness larger than 12-14 mm within 6 months

Results

- Good outcome in 43 patients followed for a mean of 2 years

Lessons learned

- This case illustrates the importance of the element scaffold of the Pentagon concept

SECOND EDITION